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Preliminary Study of Electron Emission for use in the PIC Portion of MAFIA 

 

Jon C. Freeman 

National Aeronautics and Space Administration  

Glenn Research Center 

Cleveland, Ohio 44135 

 

 

Abstract 

 This memorandum summarizes a study undertaken to apply the program 

MAFIA to the modeling of an electron gun in a traveling wave tube (TWT).  The 

basic problem is to emit particles from the cathode in the proper manner.  The 

electrons are emitted with the classical Maxwell-Boltzmann (M-B) energy 

distribution; and for a small patch of emitting surface; the distribution with angle 

obeys Lambert’s law.  This states that the current density drops off as the cosine of 

the angle from the normal.  The motivation for the work is to extend the analysis 

beyond that which has been done using older codes.  Some existing programs use 

the Child-Langmuir, or 3/2 power law, for the description of the gun.  This means 

the current varies as the 3/2 power of the anode voltage.  The proportionality 

constant is termed the perveance of the gun.  This is limited, however, since the  

3/2 variation is only an approximation.  Also, if the cathode is near saturation, the 

3/2 law definitely will not hold.  In most of the older codes, the electron beam is 

decomposed into current tubes, which imply laminar flow in the beam; even 

though experiments show the flow to be turbulent.  Also, the proper inclusion of 

noise in the beam is not possible.  These older methods of calculation do, however, 

give reasonable values for parameters of the electron beam and the overall gun, 
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and these values will be used as the starting point for a more precise particle-in-cell 

(PIC) calculation. 

To minimize the time needed for a given computer run, all beams will use 

the same number of particles in a simulation.  This is accomplished by varying the 

mass and charge of the emitted particles (macroparticles) in a certain manner, to be 

consistent with the desired beam current. 

Chapter 1, Emission Modeling, gives a general overview of how an emission 

calculation should proceed, and develops equations that adhere to the basic 

constraints of the emission process.  It ends by stating the number of particles for  

a simulation using this technique would be prohibitive.  The remaining sections 

show alternate paths that will be pursued, to obtain outputs that will be similar to 

published experimental reports.  Chapter 2, Low Voltage Diode, gives the 

analytical result for a 1-dimensional planar diode with only 1.172 volts applied to 

the anode.  This example demonstrates the magnitudes of the numbers involved.  

Then Chapter 3, Particle Enumeration, shows how to modify the particle mass  

and charge to reduce the run time to a reasonable value.  Finally, the probability 

density for a reasonable model of an electron beam in other parts of the TWT is 

developed for analysis purposes.  Appendix I gives a proof of constraints used in 

earlier sections. 
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Introduction 

This memorandum summarizes the study that was undertaken to determine 

if the electromagnetic solver, MAFIA, could be used to model the electron gun of  

a traveling wave tube.  The preliminary conclusion is that it can be used; and the 

outline of how it will be executed is explained herein. 

A critical element of an electron gun is the thermionic cathode.  The 

emission properties of any small portion of it may be viewed as the emitting 

surface of a 1-dimensional diode.  The solution for this 1-dimensional diode  

model may be found in many references; and it is called the 3/2 power, or Child-

Langmuir law.  The simple solution is an elegant display of solving Poisson’s 

equation, but it does have some assumptions that make it difficult to implement  

in a program that uses a particle-in-cell (PIC) approach. 

To obtain a clearer understanding of the modeling difficulties, the actual 

process of the emission details should be considered first.  The physical 

characteristics of the emission may be thought of in the following manner. At the 

specified cathode temperature, the electrons are emitted with a classic Maxwell-

Boltzmann (M-B) energy distribution.  As the anode potential is increased, the 

collected current increases and will eventually saturate.  This condition is denoted 

as the “thermal limited regime”; See the figure below. 
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As the anode potential is reduced, the collected current will drop, and the 

diode is in its 3/2 law regime, which is called the space charge limited region.  In 

this case the reduced electric field at the cathode does not drain off the thermally 

emitted particles fast enough, and a space-charge layer forms adjacent to the 

cathode.  The space-charge layer acts to repel some of the thermally emitted 

electrons back into the cathode surface.  This has the effect of retarding the slower 

particles, and only allowing the more energetic ones to climb the potential hill due 

to the space charge layer, and then proceed on to the anode.  Experimentally [1], 

[2] it is known that the energy distribution of the ensemble that overcomes the 

retarding space-charge field is still M-B, but with a lower effective temperature. 

The space-charge layer causes a retarding electric field at the cathode 

surface, which decays rapidly to zero as one moves toward the anode.  Beyond  

this point, the field is reversed in direction and begins to increase, and serves to 

accelerate the electrons toward the anode.  The plane where the field is zero is also 

the point of the potential minimum (the virtual cathode).  It is at this plane where 

Figure 1 - (a) The J-V family of curves showing the space-charge-limited and the 
thermal-limited regimes.  The parameter T is the Cathode temperature; T1 > T0.   
(b) Schematic of the 1-dimensional diode.  Near the cathode is the dense space-
charge layer with its resulting decelerating field. 
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the classic boundary conditions are applied.  Physically, the electric field is zero 

there, and the potential is just a few tenths of a volt below zero, but the carrier 

velocity is not zero; it is of the order of the thermal speed.  The electrons leave the 

cathode with velocities around 105 m/sec (their thermal speeds).  Since they are 

generally accelerated up to speeds of 106 or 107 m/sec in typical applications, their 

initial speeds at the real and virtual cathodes may be neglected.  The potential 

minimum is very close to the actual cathode, and it is only a few tenths of a volt 

below the grounded cathode; so at this plane, the electric field, potential, and 

velocity are set to zero.  These boundary conditions yield a solution that is very 

close to measured results.  One problem is the fact that the charge density must  

be infinite (since the velocity is zero) at the virtual cathode, since the current must 

be constant in a 1-dimensional problem.  In a real diode, the charge density near 

the cathode is extremely large, but its value is not of particular importance; only 

the current-voltage relationship is relevant in device use. 

To model a cathode with a PIC code, one could emit particles at the cathode 

with a M-B energy distribution and a net current equal to the measured saturated 

thermal current density.  Then for any applied anode potential, the space-charge 

layer would form appropriately and the collected current should match that 

measured to within numerical and experimental error.  Unfortunately this straight-

forward recipe is impossible to implement.  A large fraction of the thermally 

emitted electrons are repelled back into the surface and do not contribute to the 

collected current, and are wasteful of computer resources.  Also, the maintenance 

of the space-charge layer would be an overbearing tax on the computation time.  

The total number of particles to use gets to be unreasonable, and the run time 

would be prohibitive.  Finding a way, or several ways, to circumvent this dilemma 

constitutes the discussion of this memorandum. 
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Existing Electron Gun Software 

While an exhaustive study of all available electron gun simulators has not 

been attempted, one of the most popular ones has been researched in some depth.  

The program is called EGUN, and was developed by Hermannsfeldt [3].  The 

program uses a “starting surface” which is several mesh cells away from the actual 

cathode.  Current filaments are formed on the surface, and their values are varied 

until the net cathode current and anode voltage satisfy the 3/2 power law.  That  

is the current is proportional to the 3/2 power of the anode voltage.  The 

proportionality constant is the perveance of the gun, which is a function of the 

geometry of the electrodes.  Notice this approach completely sidesteps the problem 

of forming the space-charge layer.  In a real electron gun the electric field across 

the cathode surface varies due to the electrode geometry and applied potentials.  

This results in a variation of the space charge limited current across the surface, 

which is called variable cathode loading.  This variation may change by 20%, with 

the largest emission density near the edge of the cathode, and the lowest emission 

density near the center.  The program EGUN does calculate this variable loading 

phenomena.  The electric field and potential are held to zero on the starting 

surface, and the iteration proceeds.  The current filaments act on one another in  

a reasonable approximation, and magnetic focusing is incorporated.  One level  

of approximation used on the initial EGUN calculation is the following.  The 

documentation of the program dated in November 1979 (p. 85), says the program 

has difficulty determining the space charge on the beam axis.  The calculated value 

is multiplied by the empirical factor of 5.5 to agree with some measured results 

(the details were not given).  Notice the beam is “cold” (no thermal velocity), and 

thus noiseless.  To simulate the noise in the beam, each filament is then subdivided 

into rays of varying strength and they are emitted at specified angles from the 
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normal to the starting surface.  These filaments are quickly curved back toward  

the direction of the normal, as no crossing of the filaments is allowed in the 

calculation.  It has also been stated [4] that the program determines the perveance 

to within a few percent, but has a somewhat harder time predicting the beam 

diameter.  Unfortunately, for our analysis effort, the beam diameter determination 

is critical.  This basic scheme is used by others [5], and is also incorporated in 

MAFIA as a macro entitled SCLE (Space Charge Limited Emission). 
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Analysis Summary 

With the physical concepts of the emission process in mind, the approach to 

model an electron gun using the program MAFIA is outlined here.  The first step is 

to use the SCLE module to get the appropriate variation of cathode loading for the 

chosen electrode configuration.  Next the cathode will be partitioned into segments 

(patches) where each segment is assumed to emit a uniform current density.  Using 

this uniform current density in the patch, we will decompose it into the proper 

surface carrier density and velocity distribution to model a M-B distribution.  

Notice this step is emitting only those particles that have overcome the potential 

hill, (virtual cathode) and will be collected at the anode.  The formation of the  

M-B distribution will be developed in the very long chapter entitled “Emission 

Modeling”. 

MAFIA requires the specification (in a patch) of the number of emitted 

particles, their charge, mass, energy (speed), position, and emission directions;  

this must be kept in mind in the “Emission Modeling” section.  Notice the cathode 

is at temperature T1, with the appropriate M-B distribution for that temperature.   

At the voltage minimum (virtual cathode, and the location of the starting surface) 

the effective temperature is Teff.  We must determine Teff, and the correct M-B 

distribution at this plane.  A procedure is developed to provide this information. 

The emitted particles (in a patch) are grouped into 14 discrete energy bins, 

and the variation in the number emitted as a function of angle from the normal is 

determined exactly.  After much trial and error it was decided to always emit the 

same number of particles for every simulation.  The variation in current for 

different conditions is handled by varying the charge of the emitted particles 

(called macroparticles).  In a M-B distribution the number of particles in a given 

energy (speed) bin is dependent on that energy.  By altering the charge and mass  
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of the particles, we may use the same number of particles in each bin.  The 

adjustments conserve both energy and momentum, and the change in mean-free-

path is not severe.  For example, we consider a low voltage diode later to get a  

feel for the magnitude of numbers involved in a calculation.  If the diode is solved 

using electrons, their mean free path is about 5.89 microns.  When we use our 

derived macroparticles, the path length is 15.67 microns.  This variation will be 

assumed to be acceptable.  The motivation for this plan is to keep each run to about 

the same time duration.  From previous work it is known that using about 300,000 

particles per run requires about 4-6 hours of computing time. 

To verify the outlined scheme, a series of MAFIA computations for a known 

solution for a 1-dimensional diode will be carried out.  The details of the known 

solution are in the chapter “Low Voltage Diode”. 
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Chapter 1  Emission Modeling 

We know the energy distribution for the emitted particles is M-B both at  

the metallic cathode, and more importantly, at the virtual cathode (plane of the 

potential minimum).  The program MAFIA requires the specification of: a) area  

of the emitting surface, b) the number of particles and their positions, c) the 

particle speed, and d) the particle direction.  We may also specify the time step  

for successive bunch emissions.  Given the temperature of a cathode T1, and the 

material, we can use Figure 2.3-1 of Gewartowski [6] to determine the saturation 

emission current density Jo (Amps/cm2).  The value Jo is the limit in the thermal 

limited regime. (see [6] pages 42, 59, and 615).  The sketch below indicates the 

typical J-V plot for a thermionic cathode. 

Figure 2 - The J-V curve for a single temperature, along with the J0(θ) for a small emitting 
patch. 

 

If we choose T1 = T = 1100º K, we can assume the typical value of Jo = 0.5 A/cm2.  

In the above sketch we have indicated an emitting patch and the current density  

in the direction θ from the normal.  Let np (θ, φ) and v (θ, φ) be the number of 

particles emitted and their velocities in the (θ, φ) direction, respectively.  Here θ  

is the polar angle from the normal, and φ is the azimuthal measure.  The average 

velocity, <v>, of an emitted particle (averaged over all directions) may be obtained 

from 
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We arbitrarily choose ¼ ( )TW  for energy of the slowest particle and 5.75 ( )TW  for 

the energy of the fastest particle; then 
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so we have a sense of the order of  magnitudes with which we are dealing.  Observe 

the ratio of fastest to slowest is only about 4.8. 

 Assume no φ dependence, then 

 ∑= )()()(0 θθθ vnqJ p  (1-2) 

where q = the particle charge. 

From reference [7]  we have: 
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NR = total number of ions emitted per unit area per unit of time in the joint interval 

φθ dddu  is 

 φθθθ
π

dddueu
mh

N hmu

R cossin
2 23

22
−=  (1-3) 

where m = mass of ion (here just an electron), h = 1/2kT (see pg 156), and u is a 

particular velocity.  Note that the average energy of an emitted particle is 2kT  

(see eq. 1-1).  This is in contrast to the value of 3kT/2 for a particle in the classical 

M-B gas.  This is due to the fact that the group that has escaped, must have enough 

energy to overcome the retarding binding force at the cathode surface.  For the 

particles remaining in the metal, their average energy is 3kT/2.  See Appendix I for 

the derivation of this result.  Thus, the mean kinetic energy (KE) in the metal may 

be expressed as 3/(4h).  Integrate over φ; 

 ( ) θθθθ ddueumhuN hmu

R cossin4,
2322 −=  (1-4) 

Observe this is eq. (2.4-8) of Gewartowski [6].  In eq. (1-4 ), u ranges from 0 to ∞, 

but we know the major contribution is obtained during the interval 

 FASTSLOW vuv ≤≤  

Consider a group of particles with the same velocity (speed, call it u1); then 

their distribution with θ is 

 ( ) ( ) θθθθ dduconstuN R

111 cossin., ⋅=  (1-5) 

Then the number per unit solid angle (U.S.A.) is 

 ( ) θ
θθπ
θθθ ddu

d
constuN ASUR

1
...

11

sin2

cossin
, ⋅=  (1-6) 

 ( ) 11
...

11 cos, duconstuN ASUR θθ ⋅=  (1-7) 

We interpret eq. (1-7) as stating "for a given particle speed, those with that 

speed are distributed as cosθ."   The units of ( )θ,11 uN R  are [particles/unit 
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area]/[unit of time/U.S.A.] which equals [particle flux/U.S.A.].  Equation (1-7) is 

similar to the result of Gewartowski as follows.  Start with his eq. (2.4-8) 

 ( ) θθθθ ddueu
kT

m
udP kT

mu 2
3

2

cossin,
−






=  (1-8) 

where dP(u,θ) is the probability that the emission velocity lies in the range u to u + 

du and makes an angle with the normal in the range θ to θ + dθ. 

Integrate over all velocities (then the velocity dependence is removed). 
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 (1-9) 

Which is eq. (2.4-11) of Gewartowski.  Now we say 

J(θ) = [total emission current averaged over all directions] x 
...

)(

ASU

dP θ
 

 = 
θθπ

θθθθ
d

d
J

ASU

dP
J oo sin2

cossin2
...
)( =  

 = θ
π

cosoJ
 emitted current density/U.S.A., which is Gewartowski's eq. (2.4-

12). 

For a given T, we know the range of emission energies.  The fastest .5% of 

particles will have energy about 6WT.  The distribution of particles as a function of 

energy is 

 dEe
E

E

E

N
dN TE

E

TT

TOT
E

−=
π

2
 (1-10) 
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where ET = WT and E = W.  Notice the symbol for energy will be either W or E; we 

do this to conform to whichever author we are paralleling at a certain point in the 

analysis.  Let ηρ ηη ddN /=  where TEE /=η . 

NTOT = particle density (particles/m3).  We will subdivide the range of energy into 

B energy bins.  For now B is arbitrary.  The velocity of a particle in binj is 

 
m

E
v j

j

2
=  (1-11) 

Let nj be the particle density of those with energy Ej.  The current from a patch is 

 PATCHoPATCH AJI =  (1-12) 

where APATCH is the patch area.  Write Jo in Amps/m2 and APATCH in m2. 

 ( )BBPATCHPATCHoPATCH vnvnvnqAAJI +⋅⋅⋅++== 2211  (1-13) 

where nj = density of particles in binj    j = 1,2…,B 

          vj = velocity of particles in binj 

We will show 
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Where the j∝  are known constants. 

Then 

( )BBTOTPATCHPATCH vvvNqAI ∝⋅+⋅⋅+∝+∝= 2211  

but the vj and j∝  are known, so 

 Bj
vqA

I

m
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TOT ,...,1

3
=
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=







 (1-14) 

Once NTOT is found, nj are computed from eq. (1-13a). 
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From Millman and Seely [8], their section 5-15, we have 

 TANGENTIALNORMAL KEKE 2=  (1-15) 

which states the KE normal to the surface is twice the tangential value, when 

calculated over the ensemble.  See Appendix I for its verification.  Let nji represent 

the particle density in energy binj and emitted at angle θi.  Let vj be the velocity of 

particles in binj.  For calculation purposes we will choose 4 energy bins (j = 1 to 4) 

and 5 (i = 0 to 4) emission angles.  The sketch below illustrates the model. 

Figure 3 - The case for emission at 5 specific angles from a small patch.  Emission occurs at 
00 as well as θ1 through θ4. 
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Where RHS means the right hand side of eq. (1-15). 

But we know the velocities at the various angles are related by constants, i.e. 
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Where 
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Now the right hand side (RHS) of eq. (1-15) is 

( ){ ( )
( ) ( ) }4

22

444

2

334

2

224

2

1143

22
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2

333

2

223

2

113

2

22
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2

332

2

222

2

1121

22
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2

331

2

221

2

111
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sinsin

θθ

θθ

vnvnvnvnvnvnvnvn

vnvnvnvnvnvnvnvn

++++++++

+++++++
 

Or 

( ){
( ) ( ) ( ) }

( ){ }4

2

43

2

32

2
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2

1

2

1

4

2

43

2

32

2

2

1

2

1

2

1

2

440

2

1

2

330

2

1

2

220

2

110

sincossincossincossincos

sincossincossincos

sincos

θθθθθθθθ

θθθθθθ

θθκκκ

+++=

++

++++

Xv

vnvnvnvn

 

Then 
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{ } (

)4

2

43

2

32

2

2

1

2

1

2

14

3

3

3

2

3

1

32

12
1

sincossincossincos

sincoscoscoscoscos1

θθθθθθ

θθθθθθ

+++

=++++ XvXv
 

Then 

 ⋅⋅⋅⋅+=++++ 1

2

14

3

3

3

2

3

1

3 sincos2coscoscoscos1 θθθθθθ  

Or  

 
( ) ( )

( ) ( ) 0sincoscossincoscos

sincoscossincoscos

4

2

44

3
2
1

3

2

33

3
2
1

2

2

22

3
2
1

1

2

11

3
2
1

2
1

=−+−+

−+−+

θθθθθθ

θθθθθθ
 (1-17) 

Now define 

 θθθθ 23
2
1 sincoscos)( −=f  (1-18) 

which is sketched below. 

Figure 4 - A sketch of the function f(θ) in eq. (1-18). 
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Rearrange eq. (1-17) as 

 2
1

4321 )()()()( −=+++ θθθθ ffff  (1-17a) 

So we must choose the 4321 ,,, θθθθ  to satisfy eq. (1-17a) 

θ° f(θ) θ° f(θ) θ° f(θ) θ° f(θ) 

1 .499 22 .268 43 -.145 64 -.312 

2 .498 23 .249 44 -.161 65 -.309 

3 .495 24 .230 45 -.177 66 -.306 

4 .492 25 .210 46 -.192 67 -.301 

5 .487 26 .190 47 -.206 68 -.296 

6 .481 27 .170 48 -.220 69 -.289 

7 .474 28 .150 49 -.232 70 -.282 

8 .466 29 .129 50 -.244 71 -.274 

9 .458 30 .108 51 -.255 72 -.265 

10 .448 31 .088 52 -.266 73 -.255 

11 .437 32 .067 53 -.275 74 -.244 

12 .426 33 .046 54 -.283 75 -.233 

13 .413 34 .026 55 -.291 76 -.221 

14 .400 35 .0053 56 -.297 77 -.208 

15 .386 36 -.015 57 -.302 78 -.194 

16 .371 37 -.035 58 -.307 79 -.180 

17 .356 38 -.054 59 -.310 80 -.166 

18 .339 39 -.073 60 -.312 81 -.151 

19 .322 40 -.092 61 -.314 82 -.135 

20 .305 41 -.110 62 -.314 83 -.119 

21 .287 42 -.128 63 -.314 84 -.103 
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85 -.086 87 -.052 89 -.017   

86 -.069 88 -.035 90 0.0   

 

The following 17 sets of angles that satisfy eq. (1-17a) will be listed for 

reference purposes.  Notice that every angle from 1 to 90 is used.  The sets were 

chosen randomly. 

Set   Angles 

1 10,20,30,40,50,52,60,70,80 

2 5,15,25,40,45,50,55,60,70,81,88 

3 15,20,30,43,48,53,58,68,87 

4 7,14,28,35,36,37,40,60,65,70,75,80,85 

5 2,12,31,42,47,51,56,62,74,86 

6 11,19,63,67,73,77,79 

7 3,8,54,57,63,67,72 

8 1,59,66,71,84 

9 4,61,73,76,77 

10 23,64,69,82,89 

11 22,24,26,41,44,46,49,78,79,83 

12 6,18,34,38,39,45,46,57,61,75 

13 9,52,64,73,77,85,88 

14 13,32,68,71,73,81 

15 16,33,48,64,74,84,88 

16 17,29,42,62,68,76,89 

17 21,27,34,44,56,67,77 

Some 4 angle sets are:  (notice their sum should be -0.5) 

15,60,66,71    their sum = -.506 
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20,48,57,70    their sum = -.499 

25,62,75,80    their sum = -.503 

30,68,77,84    their sum = -.499 

Recall 

 ( ) 11413121110 nnnnnn =++++  

Or 

 

( )

∑+
=∴

=++++

i

n
n

nn

θ

θθθθ

cos1

coscoscoscos1

1
10

1432110

 (1-19) 

And n20, n30, n40 can be expressed similarly.  Thus all 16 bunches 

nji, i,j=1,2,3,4 are determined.  For each angle set, we will distribute them 

uniformly in phi (the azimuthal angle). 

Now we calculate the nj.  Recall from eq. (1-13a) 

 
TOTjj

TOT

Nn

Nn

=∝
=∝11

 

The energy distribution function is shown in the plot below 

 

 

 

 

 

 

 

 

Figure 5 - The Maxwell-Boltzmann energy distribution function plotted versus the 
normalized variable η=E/ET. 

N

ρηπ
2

η 

TOTN
ηρπ

2
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Consider a small patch which emits NTOT particles over some specified  

time interval.  Subdivide the emitted particles into 14 groups (now we will use  

14 energy bins), with the particles in each bin having the same energy, (and thus 

speed).  By graphically making the partitions, we may calculate the number of 

particles in binj 

 ηη
π

η de
N

n
jbin

TOT
j

−∫= 2
 (1-20) 

Evaluating eq. (1-20) in general terms gives 

 ηη ηη

η
den −∫= 2

1

 

Where we have suppressed the coefficient π/2 TOTN  

Let 

 ηηη dxdxxx === 2,, 2  

So 

 dxexn
x

x

x∫ −= 2

1

222  (1-21) 

Let 

 

ffxfxff

xff

ef x

2422

2
2111

1

2

−=−−=

−=

= −

 

Or 

 ( )fffx 211
4
12 +=  

Then 
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( )

[ ]

[ ] [ ])()(
2

)(2)(2

)()(

22

1222110 2
1

01

1

2

1
2
11

2
1

11
2
12

1 2

2 22

1

22

1

2

1

2

1

2

xerfxerfxfxxfxdxe

dxexfxfdxef

dxffdxex

x x

x xx

x

x
x

x

x

x

x

x

x

−+−=−

+−=+=

+=

∫

∫∫

∫∫

−

−−

−

π

 

So 

 [ ])()(
2

)()( 122211 xerfxerfxfxxfxn −+−= π
 

Thus 

 ( )






 −+−== −− )()(

22
1221

2
2

2
1 xerfxerfexexNn

N
n xx

TOT
TOT

j ππ
 (1-22) 
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Our values are: 

η  x  2xe−  
2xxe−  )(xerf  

0 0 1 0 0 

.5 .70711 .60653 .42888 .68260 

1 1 .36788 .36788 .84270 

1.5 1.2247 .22313 .27327 .91679 

2.0 1.4142 .13534 .1914 .95449 

2.5 1.5811 .082085 .12978 .97464 

3.0 1.7321 .049787 .086236 .98569 

3.5 1.8708 .030197 .056493 .99185 

4.0 2.0 .018316 .036632 .99532 

4.5 2.1213 .011109 .023566 .9973 

5.0 2.2361 .0067379 .015067 .99843 

5.5 2.3452 .0040868 .0095844 .99909 

6.0 2.4495 .0024788 .0060718 .99947 

6.5 2.5495 .0015034 .0038329 .99969 

7.0 2.6458 .00091188 .0024127 .99982 

 

 Then 
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( )

{ }

TOT

TOT

TOT

TOT

TOT

TOT

TOT

TOT

TOT

TOT

TOT

TOT

TOTTOT

TOTTOT

Nn

Nn

Nn

Nn

Nn

Nn

Nn

Nn

Nn

Nn

Nn

Nn

NNn

NNn

3

14

3

13

3

12

3

11

10

9

8

7

6

5

4

3

2

1

107326.1

107464.2

103436.4

108466.6

01072.

016724.

025881.

039722.

060185.

089682.

13008.

18085.

2289.

19866.6826.4288.
2

−

−

−

−

×=

×=

×=

×=

=
=
=
=
=
=
=
=

==

=






 +−=

π

 

As a check, 

 ∑
=

=
14

1

9971.
j

TOTj Nn  (1-23) 

Thus the final table is: 

 

Bin 
jη  nj/NTOT 

1 .25 .19866 

2 .75 .22893 

3 1.25 .18085 

4 1.75 .13008 

5 2.25 .089682 
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6 2.75 .060185 

7 3.25 .039722 

8 3.75 .025881 

9 4.25 .016724 

10 4.75 .01072 

11 5.25 6.8466x10-3 

12 5.75 4.343x10-3 

13 6.25 2.7464x10-3 

14 6.75 1.7326x10-3 

 

Where jη  is the normalized energy parameter at the center of the partition.  

The emission velocity is developed as follows. 

 jTjjj EEwriteqEmv η2;2
2
1 ==  

Where 600,11
TET = ; the factor of 2 is to account for those that have escaped. 

 kT
T

mv jjj ηη 2
600,11

22
2
1 =





=  (1-24) 

or 

 

sec/10785.7

10108.9

)1038.1(44

3

31

23 2
1

mT

T
m

kT
v

j

jjj

η

ηη

×=







×
×==

−

−

 (1-25) 

For our case, T =1100° K, thus jjv η510582.2 ×=  (1-26) 
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Bin 
jη  nj/NTOT vj (m/sec) 

1 .25 .19866 1.29x105 

2 .75 .22893 2.2361x105 

3 1.25 .18085 2.8868x105 

4 1.75 .13008 3.4157x105 

5 2.25 .089682 3.873  “ 

6 2.75 .060185 4.282  “ 

7 3.25 .039722 4.655  “ 

8 3.75 .025881 5.0x105 

9 4.25 .016724 5.32  “ 

10 4.75 .01072 5.627 “ 

11 5.25 6.8466x10-3 5.92  “ 

12 5.75 4.3436x10-3 6.19  “ 

13 6.25 2.7464x10-3 6.46  “ 

14 6.75 1.7326x10-3 6.71x105 

   

Note vFAST / vSLOW =�  5.2 

 Gewartowski shows 

 ( )
ASU

cmAmpsJ
J

..
/

cos
2

0 θ
π

θ =  (1-27) 

Assume all particles are identical, then 

 ( ) ( ) ( ) ( )[ ]∑ +⋅⋅⋅++= 14142211 ,,, vnvnvnqJ φθφθφθθ  (1-28) 

Where n1 (θ, φ) = the number of particles in direction (θ, φ) with speed v1 

Then 

 ∫ ∫ ==
φ θ

κφθφθ TOTNnddn 111 ),(  



NASA/TM—2001-210890 27 

In general 

 TOTjjj Nnddn κφθφθ
φ θ

==∫ ∫ ),(  (1-29) 

It is shown in Richardson [7] that for a fixed velocity, the angular distribution is 

uniform in φ and cosine in theta (θ).  Thus 

 θφθ cos),( jj An =  (1-30) 

Then 

 
( )

π
κ

πθθπκ
π

θ

2

2cos22

0

TOTj

j

jjTOTj

N
A

AdAN

=∴

== ∫ =

 (1-31) 

Observe eq. (1-30) satisfies a fundamental constraint; namely 

 gentialnormal KEKE tan2 ×=  (1-32) 

For a given velocity 

 
( )

( )3
2

2

cos
2

coscos
2

2

0

3

2
2

22

jj

jj

o jjnormal

vmA

d
vmA

dvA
m

KE

=

== ∫∫
ππ

θθθθθ
 (1-33) 

 ( )3
1

2
sincos

2
2

0

2

2

2

tan ∫ ==
π

θθθ jjjj

gential

vmA
d

vmA
KE  (1-34) 

Observe eq. (1- 33) is twice eq. (1- 34), which validates the procedures used.  Now 

combining eqns. (1-27) and (1-28) 

 ( ) ( ) ( ){ }14142211 coscoscoscos)( vAvAvAq
J

J o θθθθ
π

θ +⋅⋅⋅++==  

Or 
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{ }

∑
=

=∴

+⋅⋅⋅++=

14

1

14142211

2

2

j
jj

TOT
o

TOTTOTTOT
o

v
qN

J

vNvNvN
qJ

κ

κκκ
ππ

 (1-35) 

Now we can determine NTOT given Jo and T. 

A typical example might use Jo = 5 Amp/cm2 = 5 x 104 Amp/m2 

Evaluating ∑
14

1
jjvκ  
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From eq. (1-35) 
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14
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6
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5
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4

15
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16

3

15

9
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2

15

8

16

1

10929.510359.1

10398.910059.2

10486.110069.3

10343.210451.4

10668.310188.6

10723.510834.7

10856.810798.6

×=×=

×=×=

×=×=

×=×=

×=×=

×=×=

×=×=

AA

AA

AA

AA
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AA
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While the above is without approximation (except for the finite number of 

partitions), the numbers are too large for MAFIA.  There are many constraints on 

the emitted particles when using the program; some of them are:  There is no easy 

way to incorporate the cosine distribution with θ.  Instead, we’ll use a parabolic 

distribution that closely matches a cosine.  The number of particles/bin cannot be 

too large, or the run time will become prohibitive.  The number of patches may be 

large, especially when modeling near the edge of the cathode.  The question as to 

whether one should use systematic emission versus random emission is a very 

perplexing problem.  The systematic case develops lower computation noise, but  

a random process seems to be what one needs.  However, how does one produce 

such a condition, yet guarantee the emission is theoretically correct?  Another 

constraint is the use of 4 to 5 particles per mesh cell to obtain good results.  These 

along with other conditions will be explored and overcome in the succeeding work. 
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Chapter 2  Low Voltage Diode 

To obtain a clearer perspective of the magnitudes of the parameters for a 

thermionic cathode, an analytical study of a typical 1-dimensional diode was 

undertaken.  The following example is close to that given by Beck [9], pg. 173  

(the example has some errors).  The diode has plates with surface area of 0.2 cm2 

and separated the distance d, as shown below. 

 

Figure 6 - The geometry of the 1-dimensional diode. 

 

The current drawn is 1.0 mA, the current density is 5 x 10-3 A/cm2 , and the thermal 

limited value Jo is 5.0 A/cm2.  At the cathode the parameter η is 

 9078.610ln)/ln( 3 ===≡ JJ ocηη  

From the table on page 527 of [9], we see this corresponds to the parameter 

- cξ  = 2.509.  Where ξ  is defined by 

 ( )mxxJT −×= − 4
3510174.9ξ  (2-1) 

x

.447 cm

T = 1100 K

area = .2 cm2

d

d = .5 mm

x

.447 cm

T = 1100 K

area = .2 cm2

d

d = .5 mm
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where x, xm are in cm, J is in A/cm2, and T is in Kelvins.  The voltage minimum is 

located at xm.  This equation is taken from the original paper by Langmuir [10].  At 

the cathode, cξξ =  and x = 0.  Then 

 mx2103963.3509.2 ×−=−  

or  

 mmmxm 074.0104.7 5 =×= −  

Then the voltage at the minimum is 

 voltsVm 65471.010ln
600,11

1100 3 −=−=  

At the anode 

 ( ) 468.140074.05.10396.3 2 =−×=aξ  

From the table in [9] we read 27.19=aη  

Now  

 

( )

( )

voltsV

V

VV
T

a

a

m

172.1

65471.
1100

606,11
27.19

606,11

=∴

+=

−=η

 

Where Va is the required anode voltage. 

With this information we may generate a plot of the potential through the 

diode versus x.  The table is: 

)(cmx  ξ  η  )(voltsV  

0 -2.509 6.9078 0 

.000625 -2.301 3.5 -.323 

.00125 -2.089 2.286 -.438 

.0025 -1.6642 1.12 -.549 
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.005 -.8151 .2 -.636 

.006 -.4755 .065 -.649 

.007 -.1359 .0045 -.6543 

.008 +.204 .001 -.6546 

.009 +.543 .067 -.648 

.010 +.883 .17 -.6386 

.020 +4.279 2.8 -.389 

.030 +7.676 7.2 +.028 

.040 +11.07 12.7 +.549 

.050 +14.47 19.27 +1.172 

 

The plot of the voltage is shown below. 

Figure 7 - A sketch of the voltage V(x) through the diode.  The value at the minimum 
position (xm) is about -0.655 volts. 
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We could numerically differentiate V(x) to obtain the electric field, E  but to 

check for consistency between various treatments of the 1-dimensional diode, [11], 

we will use an analytic formula for E  from [9].  For x < xm the field is given by 

 ( )[ ]2
1

21
2

π
ηηη η −+−= erfeeKE  

For x > xm, we have 

 ( )[ ]2
1

21
2

π
ηηη η +−−= erfeeKE  

Where E  is in V/cm, K = 6250J T  = 1.0364 x 103 V2/cm2.   The table is: 

  

)(cmx  η  η  )( ηerf  )/( cmVE  

0 6.9078 2.6283 .9998 1.4382x103 

.000625 3.5 1.8708 .9918 255 

.00125 2.286 1.512 .967 131.3 

.0025 1.12 1.058 .865 60.4 

.005 .2 .447 .466 17.17 

.006 .065 .255 .281 9.07 

.007 .0045 .067 .075 10-4 

.010 .17 .4123 .438 -11.67 

.030 7.2 2.683 .99985 -48.06 

.040 12.7 3.56 1 -55.96 

.050 19.27 4.3898 1 -64 

 

The first and last E -field entries are those at the cathode cE  and anode aE .  The 

magnitude of the field at the anode is 64 V/cm, and from the graph of the potential, 
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the slope at the anode is about 1 volt over .015 cm, or 66.7 V/cm.  The agreement  

is well within tolerance. 

Next we may determine the charge density )(xρ  as follows.  For 

convenience we first determine it in the accelerating part of the field; 

For x > xm 

 ( )[ ]2
1

21
2

π
ηηη η +−−= erfeeKE  

Let ( )ηη ηerfef =)(1  
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( ) ( )

( ) ( )

πη
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ηπ
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ηηηη

12
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2
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1
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1
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1
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+=+




= −
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fef
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erfeeerfeef

 

 ( )
dx

d
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E

ηη12 =  

But 

 ( )

dV
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dx
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o
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−==
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2 1  

where oε  is the permittivity of free space. 

Or 
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Note 

 




−=

1100
11606
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2

)( 1 ηερ f
K

x o  

Where 

 
( )

( ) 3
14

2

27
2

3

108409.4)(

100364.1100364.1

m
coulfx

m
V

cm
VK

ηρ −×−=∴

×=×=
 

 ( )mxx −×= 2103962.3ξ  

Our table is below. 

)(cmx  ξ  η  η  ηerf  )(1 ηf  )/( 3mcρ  

.0075 .03396 .00027 1.64E-2 -- -- -- 

.0076 .0679 .001 3.16E-2 .338 17.38 -84.1x10-4 

.008 .2038 .0096 9.8E-2 -- -- -4.59x10-4 

.009 .5434 .067 .259 .284 1.0993 -5.32x10-4 

.010 .883 .17 .412 .438 .906 -4.39x10-4 

.020 4.28 2.8 1.67 .982 .49522 -2.4x10-4 

.030 7.68 7.2 2.68 .99985 -- -- 

.040 11.07 12.7 3.56 1 -- -- 

.045 12.77 15.7 3.96 1 -- -- 

.050 14.47 19.27 4.39 1 .99988 -4.84x10-4 
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Now for x < xm. 
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Now we estimate ρ  from the slope of E . 
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The final table is 

)(cmx  ( )3m
coulρ  

3.125x10-4 -.1673 

9.375x10-4 -.01753 

1.875x10-3 -.005 

3.75x10-3 -1.531x10-3 

5.5x10-3 -7.17x10-4 

8x10-3 -4.59x10-4 

2x10-2 -1.61x10-5 
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3.5x10-2 -6.9947x10-5 

4.5x10-2 -7.119x10-5 

 

Now we determine the total space charge between the plates. 
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So 

 [ ] A
QxExE abo =− )()(ε  

Where xa and xb are arbitrary points, and A = cross-sectional area. 

For x < xm 
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So the charge between x = 0 and x = xm is 
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So 1Q  ( )( )( )m
V

m
Fm 51225 104382.110854.8102 ×−××= −−  

          −− ×⇒×−= ecoul 811 1059.110547.2  

For x > xm 
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At x = xm 

 [ ] 00011
2

=+−−= KE  

Hence 0)( =mxE  as before. 

At x = xa (the anode) cm
VxE a 64)( −=  

 
−− ×⇒×−=∴
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ecoulQ
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m

cm
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Then the total charge is 

 −− ×⇒×−=+= ecoulQQQTOT

811

21 1066.11066.2  

We may now ascertain the velocity field: 

 

( ) ( )

( ) ( ) sec/
50

50 2

m
x

xv

xvx
m

AmpJ

ρ

ρ

=∴

==
 

The table is: 

)(cmx  sec)/(mv  

3.125x10-4 2.99x102 

9.375x10-4 2.85x103 

1.875x10-4 9.956x103 

3.75x10-3 3.27x104 

5.5x10-3 6.97x104 

8x10-3 1.089x105 

2x10-3 3.1x105 

3.5x10-2 7.148x105 

4.5x10-2 7.02x105 
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Note the thermal emission velocity is about 4.0E+5 m/sec.  So the values in the 

above table are very reasonable.  Notice the velocity varies by about a factor of 

1000. 

The magnitude of the electric field )(xE , across the diode is shown below.  The 

cathode value is 1,438.2 volts/cm, while that at the anode is –64 volts/cm.  The 

field passes through zero at 0.074 mm from the cathode. 

Figure 8 - A plot of E  through the diode. 
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Below is the charge density )(xρ  and the velocity field v(x) across the diode. 

Figure 9 - The charge density )(xρ and velocity field v(x) for the problem at hand. 

 
This completes the calculation of a 1-dimensional diode in a regime where 

the 3/2 power law is not applicable.  That regime is when J/Jo is between very 

roughly 0.01 to 0.5, rather than our case of 0.001.  It is a useful example as the 

voltage minimum is away from the plane of the cathode and the charge density is 

not extremely large near the cathode.  Here the density drops 3 orders of magnitude 

from the cathode to the voltage minimum (the virtual cathode), and the applied 

voltage is only 1.172 volts.  We are drawing 1 mA, which is not too far from some 

actual TWTs (at least order of magnitude).  Reference [11], by Kirstein, Kino, and 

Waters, has a good treatment of the problem, albeit in a notation that is unique.  

See refs. [12] through [15] for more information on this problem. 
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Chapter 3  Particle Enumeration 

We now attempt to determine the way to model the 1-dimensional diode 

using a finite number of particles emitted over some specified time interval.  First 

we divide the space between the plates into equal segments ∆ d, and over the 

segments we use vdt ∆∆=∆ / , where v∆  is the change in the velocity field over  

a segment.  By using 9 such equal length segments we ascertain the transit time  

is about 27 nsec (for the Low Voltage Diode studied earlier).  Gewartowski [6],  

pg. 629 gives the time of flight for the 3/2 law regime as 

 
3

1

6







=
J

d
t o

f η
ε

 

which for our case is 1.45 nsec.  The difference of more than an order of 

magnitude shows how far we are from the normal regime. 

Recall, we would like to emit particles at the virtual cathode (plane of the 

voltage minimum).  Help in this task is provided by [11] on pg.275, eq. (2.44).  

This expression gives the variation of potential with distance near the voltage 

minimum 

 ( )2
4

2

1082.1
m

o

m xxJ
T

VV −×=−
−

ε
π

 (3-1) 

J in Amp/m2 

 ( )[ ]m

o

xxJ
Tdx

dV −×=
−

2
2

1082.1 4

ε
π

 (3-2) 

The next derivative gives the charge density, which we see is not a function of 

position about the virtual cathode. 

 J
Tdx

Vd

oε
π 4

2

2 1082.1 −×=  (3-3) 
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Observe eq. (3-2) shows that the electric field varies linearly through the virtual 

cathode plane.  Then 
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Notice the analytical result in the section “Low Voltage Diode” gave the charge 

density of -7 x 10-4 coul/m3, so our results show remarkable consistency.  Since 

 

( ) ( ) ( )[ ]

( ) sec/1049.5

1082.1

3

4

m
T

xv

xvx
T

x

m

mmm

×=∴

−×−= −

π

ρπρ
 (3-4) 

Which states the average velocity at xm is independent of all other parameters 

except the cathode temperature.  For typical ranges of T we find 

T(K) v(xm) m/sec 

1000 9.79x104 

1050 1.0x105 

1100 1.03x105 

1150 1.05x105 

1200 1.07x105 

 

So <v (xm) > is nearly 1.0 x 105 m/sec for all temperatures and applied voltages, 

and currents.  For reference, the velocity values in bins 1 and 14 are 1.29 x 105 and 

6.71 x 105 m/sec. 

Observe that the energy needed to overcome the retarding field of the space 

charge layer is 
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 JoulesvoltsqKE 1910048.1)655.0( −×==  

The velocity required is 

 

sec/108.4

10048.1
2
1

5

192

mv

mv

×=∴

×= −

 

So only those particles in bins 8-14 can escape the region and proceed on to the 

collector.  This amounts to only 0.07 of the total number emitted per unit time. 

Now consider a diode carrying the current i .  Then the current in a given 

patch is 

 
t

Q

N

i
i p

p

p ∆
∆

==  (3-5) 

Where Np = the number of patches chosen for the entire cathode.  Then 

 ∑ ∆=∆=∆ QntiQ ppp  (3-6) 

Where np = the number of particles per patch, and ∑∆Q  is their net charge.  Here 

pQ∆  is the total charge emitted in a patch in the specified time interval t∆ . 

Now 

 1421 QQQQp ∆+⋅⋅⋅+∆+∆=∆  (3-7) 

where 

 141414111 ,..., qnQqnQ =∆=∆  (3-7a) 

Since there are 14 energy bins.  Here qj is the charge value in a given bin.  

Consider binj; its total kinetic energy (KE) is 

 2

2
1

jjjj vMnKE 




=  (3-8) 
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Where nj, Mj, vj are the number of particles, their mass, and their common speed 

respectively.  If the particles in all of the bins had the same mass m (this is the 

actual case in a real device), then 

 2

141414 2
1

vmnKE 




=  (3-9) 

 2

2
1

jjj vmnKE 




=  (3-10) 

re-arrange 

 j

jjj

v

v

n

n

KE

KE
µ≡





=

2

141414

 (3-11) 

Now let us use n14 particles in binj, but keep its KE the same. 

 2

14 2
1

jjj vMnKE 




=  (3-12) 

We retain the original KE by assigning the particles a new mass Mj 

From eqns. (3-11) and (3-12) 
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1414 2
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jjjj vMnKKE 




==µ  (3-13a) 

Or 
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=





  (3-13b) 

Or 

 14

14

m
n

n
M j

j =  (3-14) 

Now the ratios nj/n14 are known from the M-B distribution, and for our chosen 

energy bins, they are: 
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 (3-15) 

Since MAFIA keeps the charge to mass ratio constant (equal to that of an electron), 
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Hence 
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j =  (3-16) 

Returning to eq. ( 3-7) we observe 
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And so forth; Thus 
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+⋅⋅⋅++=∆  (3-17) 

Where we have set the number of particles in each bin to be n14, as stated after eq. 

(3-11).  Now from eq. (3-14) 
1414 n

n
m

M jj = , so the term in parentheses in eq. (3-17) is 

known 

 43.5751
14

13

14

1 =
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n

n

n

n
 (3-18) 

Where we have used eq. (3-15).  Thus eq. (3-17) becomes 

 tinqQ pp ∆==∆ 141443.575  (3-19) 
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Now eq. (3-19) is our basic working equation.  The current from the patch ip 

is known, the time interval t∆  may be chosen compatible with MAFIA’s 

constraints on run time, etc.  The number of carriers may be chosen, then the 

charge on the particles (macroparticles in MAFIA) is determined.  Eq. (3-19) 

determines the charge on the fast particles, which are in bin 14.  The mass and 

charge for the remaining 13 bins are found using eqns. (3-14), (3-15), and (3-16a). 

Before q14 is determined we must choose n14.  The total number of charges 

emitted during the interval t∆  is 

 pTOTC NnN )14(14=  (3-20) 

Where NTOTC is the total number emitted for all patches.  For a given energy bin  

we know the particles are distributed as cosθ, so we choose the following recipe.  

Let 1 particle emerge at 85° and let the number increase as 0→θ .  The table is: 

 

θ° # particles cosθ 

85 1 0.0872 

80 2 0.1737 

75 3 0.2588 

70 4 0.342 

65 5 0.4226 

60 6 0.500 

55 7 0.574 

50 7 0.643 

45 8 0.707 

40 9 0.766 

35 9 0.8192 
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30 10 0.866 

25 10 0.906 

20 11 0.9397 

15 11 0.9659 

10 11 0.9848 

5 11 0.99619 

0 11 1.000 

 

Then n14 = 136 particles/energy bin.  The number of particles processed in a 

complete MAFIA run is 

 cycpRUNTOT NNN )14)(136(=−  (3-21) 

Where Ncyc is the total number of emission cycle intervals. 

We can apply this to our low voltage diode problem as follows.  The total 

charge between the cathode and the voltage minimum is 

 −− ×⇒×−= eCQ 811

1 105917.1105468.2  

While that between the virtual cathode and the anode is 
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106625.11066.2

100833.7101133.
 

Since the time of flight is about 27 nsec, choose t∆  = 2.7 nseconds.  Choose  

10 patches, then ip = 10-4 Amp, and from (3-19) 

 CQp

1394 107.2)107.2(10 −−− ×=×=∆  

So the amount of charge developed/emission cycle is 

 CQp

12107.210 −×=∆  

The total charge between the plates is then generated in 
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 cycles85.9
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1066.2

12
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Also from (3-19), the charge q14 is 

 ( )( )
−−

−

⇒×=×= eC
C

q 56.211045.3
13643.575

107.2 18
13

14  

If we use 50 cycles, the total number of particles processed is 

 runparticlesN RUNTOT /1052.9)50)(10)(14)(136( 5×==−  

So 9.52 x 105 particles emitted during 135 nsec.  This value corresponds with that 

used by C. Kory and K. Vaden using the program.  C. Kory uses about 2.8 x 105 

particles per run. 

At this point we have all the information to emit particles from the virtual 

cathode.  We now must determine the correct M-B energy distribution at this 

plane.  We know the saturation current is 103 times larger than that collected.  Only 

10-3 of that emitted by the actual cathode is actually collected; the remainder is 

pushed back into the cathode, only to be re-emitted again.  In other words, as we 

move from the cathode toward the voltage minimum, the carrier density decreases 

rapidly, but the imbalance of carriers moving in opposite directions still maintains 

the net 1 mA current toward the anode.  At the virtual cathode and beyond, 

particles are only moving toward the anode and they constitute the 1 mA current  

at every plane. 

The velocity distribution for each bin was given in the Emission Modeling 

section, eq. (1-26) and subsequent table.  Eq. (3-4) above shows the average 

velocity at the minimum to be 

 ( ) sec/1049.5 3 m
T

xv m ×=
π

 (3-22) 

And for our temperature, T = 1100° K, we have 
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 ( ) sec/1003.1 5 mxv m ×=  

From [8], the most probable speed occurs when jη  = 1, (see eq. 8.32, pg 224).  

Then from eq. (1-26) of the Emission Modeling section we find the most probable 

speed = vc = 2.582 x 105 m/sec.  Then the average speed v  is 1.128 vc = 2.9125 x 

105 m/sec.  The rms value is 1.224 vc = 3.16 x 105 m/sec.  Also from eq. (1-26) 

 )1since(10785.7 3 =×= jc Tv η  (3-23) 

So the average velocity is 

 Tv )10785.7)(128.1( 3×=  (3-24) 

The above is for the particles leaving the cathode, what we need, however, is 

the velocity distribution at the plane of the voltage minimum (the virtual cathode).  

It is calculated as follows.  We know the energy in a particular bin is 12 kTjη , and 

for bin 14 for our temperature it is 1.2808 eV.  The factor of two occurs since we 

are considering those electrons that have escaped.  The potential hill each particle 

must overcome is 0.655 eV (the voltage at the minimum is 0.655 volts).  Thus, the 

fastest particles beyond the minimum have energy 1.2808 - .655 = .6258 eV.  Now 

from experiments, we know the distribution is still Maxwell-Boltzmann, so this 

energy must correspond to those in bin 14 at the new, but lower, effective 

temperature.  Bin 14 is characterized by jη  = 6.75.  Thus our new temperature is 

defined by 

 
( )

KTeff

kTeffTeffk j

o1075

75.66258.

=∴

== η
 (3-25) 

Notice here the factor of 2 does not appear, as now we treat all emitted electrons  

as constituting a normal M-B gas.  Thus our new temperature is 1075° K.  We can 

always determine the effective temperature since the value of the voltage minimum 
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is known once the total current is chosen, and the saturation current is known for 

the specific cathode.  The minimum voltage is given by 

 


−= J
JT

V o
m ln

605,11
 (3-26) 

Where T is that for the cathode.  Once the new temperature Teff is known, the 

velocities for the bins become 

 sec/10893.3 3 mTv effjj η×=  (3-27) 

The new table for the velocities (at the voltage minimum) as compared to those  

in the Emission Modeling section (which were at the cathode), is: 

Bin 
jη  v (m/sec) 

1 .25 3.191x104 

2 .75 9.573x104 

3 1.25 1.596x105 

4 1.75 2.234x105 

5 2.25 2.872x105 

6 2.75 3.5101x105 

7 3.25 4.148x105 

8 3.75 4.787x105 

9 4.25 5.425x105 

10 4.75 6.063x105 

11 5.25 6.7x105 

12 5.75 7.34x105 

13 6.25 7.98x105 

14 6.75 8.616x105 
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To simplify the modeling, we may use a built-in feature of MAFIA; that 

being a parabolic distribution with chosen parameter.  We will approximate the 

cosine distribution with the first two terms of its Taylor expansion, which is a 

parabolic representation. 

 

204967.1)(
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Beam Velocity Profile 

After a careful study of the experimental results on the beams created by a 

typical electron gun, we may make the following tentative statements.  Firstly,  

the reported results are somewhat ambiguous, and secondly, they do not give the 

information in the form useful for our modeling effort.  We desire the particle 

density and velocity at least over a specified plane normal to the axis of the beam.  

The reports give approximations that yield either velocity or charge density vs. 

radial value, but not both.  Some studies have stated the current density falls off  

in a Gaussian manner from the beam center to the edge.  Stating that the current 

density is Gaussian only tells us that the product of particle density and velocity 

are such.  For our efforts, we need both quantities, not just their product.  Some 

papers however, state that the beam is far from laminar (or Gaussian) and that rings 

of charge start at the edge and move through the beam to the center.  It is not clear 

if the reported results are due to the particular electron gun used, or are typical of 

all guns. 

With the state of affairs as such, a reasonable approximation for the beam 

velocity profile chosen by C. Kory is as follows.  At the emission plane initialize 

particles such that their angle with the normal θ is given by 

 
z

t

u

u=θtan  (1) 

Where ut and uz are the transverse and longitudinal velocities, respectively.  The 

longitudinal velocity is constant, due solely to the anode potential.  The transverse 

component is assumed to be Gaussian.  Writing the above in more familiar 

notation 

 




= −

a

x
y 1tan  (2) 
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In essence we are seeking the probability density function for θ (or y), given the 

density for x (the transverse component ut). 

When y > 0 

 yax tan=  

Let g(x) = y, then 

 
22

1 )(
xa

a
xg

+
=  

Then the density function for y (y = θ) is fY (y), 
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/
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22

+=
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=  

where fX(x) is the density of the random variable x (x = ut) 

If x is normally distributed 

 ( ) 22 2

2

1 σ

πσ
x

X exf −=  

Then 

 ( ) 222 2/tan
22
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1 σ

πσ
ya

Y e
a

xa
yf −+=  (3) 

When y < 0  yax tan=  

So eq. (3) is the same as before.  In eq. (3) 

 yax 222 tan=  

Hence 

 ( ) 222 2/tan2

2

1
sec σ

πσ
ya

Y eyayf −=  (4) 

In most guns 
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The standard deviation is 
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For typical values sec/10~sec,/102~ 75 mam×σ  

 ( ) 65.17573. == $θYf  

Therefore eq. (4) is the probability density function for the emission angle for  

a given small patch, for a typical electron gun under the assumption of eq. (1).   

A sketch of fY(θ) is below. 

 

Figure 10 - The distribution fY(θ) for the emission angle θ from the normal. 
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Conclusions 

It appears that MAFIA can be used to model electron guns with a Maxwell-

Boltzmann energy distribution of the emitted electrons.  To keep the run-time to a 

minimum, a scheme was devised that uses the same number of particles for any 

cathode current.  The charge and mass of the particles are varied to conform to the 

given current.  Similar to the older program EGUN, the calculation starts at a plane 

close to the actual cathode.  In EGUN it is called the “starting surface” and is 

chosen somewhat arbitrarily (a few mesh cells from the cathode).  EGUN sets up 

current tubes on the surface and varies them until the solution (forced to obey the 

Child-Langmuir 3/2 power law) is determined.  We, however, emit charged 

particles (macroparticles) of varying charge and mass, which have the M-B energy 

distribution, and the proper distribution in emission angle from the cathode.  Our 

emission plane is close to the virtual cathode whose position is known once the 

current is chosen.  The actual virtual cathode varies with distance from the true 

cathode; it depends on the local cathode loading on a given patch.  The loading 

varies by as much as 20% in some cases.  The effective temperature of the 

macroparticles is calculated, given the known temperature of the cathode.  The 

modeling of the beam should be closer to reality than any published scheme to 

date.  The solution is not constrained to obey the 3/2 power law, so all regimes of 

emission are able to be examined.  Specifically, if some region of the cathode is  

in saturation, this scheme can handle it easily.  Also the non-laminar (noise) 

properties of the beam should be modeled completely.  The use of particles will 

determine the true beam diameter as it exits the gun, as well as the spread of 

trajectories at the beam waist (near the point where the PPM stack applies the 

confining magnetic field). 
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The following bulletized list summarizes the accomplishments that are 

distributed throughout the memorandum. 

• Explained how the program EGUN operates, and some of its shortcomings.  

Fundamentally, the procedure bypasses the establishment of the space-

charge layer, from which the anode current is developed.  Instead, it models 

the beam as current tubes.  The tubes cannot cross one another; so laminar 

flow is implied, even though experiments suggest otherwise.  The noise 

properties of the beam are therefore lost completely.  The calculation 

assumes the 3/2 law, which eliminates the possibility of portions of the 

cathode being in saturation.  A consequence of the assumptions is its 

difficulty in correctly determining the beam diameter along the gun, as well 

as finding the correct value of the space-charge along the axis.  An empirical 

factor of 5.5 is used to correct the value found by the calculation.  It does, 

however, find the perveance to a few per cent. 

• Started with Lambert’s law as given in Gewartowski [6] 

 ( ) ( ) ( ) ( ) ( )θθθθθ
π

θ jj
o vnqvqn

J
J ∑=== �cos  

and showed that nj(θ) is distributed as cosθ for a fixed value of velocity vj.  

This result followed from the statement that the kinetic energy normal to the 

surface is twice that tangential to the surface.  This was proven in Appendix 

I, and developed in Chapter 1, Emission Modeling. 

• With particle use, we will be able to model all parts of the I-V plane, as well 

as noise, and non-laminar flow. 

• Chapter 1, Emission Modeling, indicates the basic way the problem should 

be handled.  It ends by showing the numbers needed are too large for 

MAFIA.  It demonstrated the difficulties encountered in trying to establish 
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the space-charge layer.  It is actually this layer which serves to emit particles 

that form the beam. 

• It was recognized that the emission maybe viewed as follows.  There is a  

M-B gas in the cathode, and there is another M-B gas, at a different 

temperature, which forms the space-charge layer.  Then we can define a 

third temperature Teff, which characterizes those electrons that have traversed 

the space charge layer and are going toward the anode.  Those that are 

collected are also M-B which was determined from the experimental results 

of references [1], and [2].  Appendix I also showed the escaping electrons  

to have a temperature such that the average energy was 2kT vs the 3kT/2 of 

those that remain in the metal.  Here T is the cathode temperature.  However, 

in that calculation, the repelling force of the space-charge layer at the surface 

was not considered. 

• Chapter 2 detailed the solution for the 1-dimensional diode that used the 

thermal velocity of the emitted charge as a boundary condition.  The 

equations are non-linear, and tables have been established to facilitate the 

voltage, charge, electric field, and velocity field between the plates.  We 

followed the lead of Beck [9] in this regard. 

• We stated the boundary conditions for the 3/2 law require the charge density 

to be infinite at the virtual cathode plane, which is not possible to be 

modeled using particles. 

• In principle, one should use particles in the following manner.  With the 

cathode temperature given, the thermal limited current density is established 

for the particular cathode material.  Emit particles with the M-B distribution, 

and which satisfy the current density constraint.  The space-charge layer 

should form in the simulation, and steady state should occur.  However, in 
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the middle range of the I-V characteristic, about ½ of those emitted will 

return to the cathode, only to be re-emitted.  This would be a waste of 

computational time, just to establish this “bias condition” to allow the actual 

current to the anode to be established.  Thus one must somehow sidestep the 

formation of the space-charge layer. 

• Chapter 3 outlined a method to sidestep the formation of the space-charge 

layer.  The idea is to only emit those that reach the anode.  The 

determination of their effective temperature Teff was presented. 

• Chapter 1 presented some bunches (17 angle sets) to be emitted if a 

distribution function in the program MAFIA was found to not be 

appropriate.  A function f(θ) was developed to determine the correct makeup 

of a given bunch. 

• We plan to model the cosine distribution for each energy bin group with a 

parabolic distribution function which is available in MAFIA. 

• Chapter 2 gave a solution for 1 mA of current and 1.172 volts.  There, 

representative numbers were determined.  In an actual gun, say the one in 

the Cassini Mission TWT, the current is 15 mA and the voltage is 5kV.   

Thus we must verify the model using the 1.172 case. 

• For the example we found the charge density varies by 4 orders of 

magnitude through the diode.  The electric field changed from + to -, and 

varied by a factor of 22 from cathode to anode.  The velocity field changed 

by a factor to 1000.  Finally, the total number of charges between the plates 

in steady state is 166 million.  Of these, 159 million are between the cathode 

and the plane of the voltage minimum. 

• Chapter 3 explained the method to keep the total number of particles in a 

given run constant.  The variation in current is handled by adjusting the 



NASA/TM—2001-210890 59 

charge and mass of the particles in the fixed 14 energy bins.  This will 

dovetail into the program’s requirement of 4-5 macroparticles per mesh cell. 

• We used [11] to realize the average velocity near the voltage minimum is 

nearly constant for all current levels; it varies only slightly with cathode 

temperature.  Looking back at the numerical solution obtained in Chapter 2 

we found complete compliance with this result! 

• With all of the compression done on the number of particles used, the runs 

may take 12-18 hours.  We hope we have over-estimated the run times. 

• We have developed the probability distribution of the angle θ from the beam 

axis, fY(θ), for a reasonable approximation for defining an electron beam for 

other uses in parts of TWT simulations.  If the transverse velocities are 

gaussian, while the normal component is constant, we find θ is distributed as 

 ( ) ( ) 22 2/2

2

1
sec σ

πσ
θθθ tu

zY euff −
Θ =≡  
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Appendix I 

Section 5-15 of [8], page 141, concerns itself with the energies of escaping 

electrons from a hot cathode.  This is an important result, as most formulas, results, 

concepts, etc. from electron gas theory in solids is for the case where the carriers 

remain in the metal.  While we know the statistics of the ensemble for the electrons 

in the metal, what are they for the portion that escapes?  It is more convenient to 

attack this problem as a function of velocity, thus 

 2

2
1

mvqE =  

Notice the notation that electric potential is given the symbol E (a peculiarity of 

Millman and Seely), while in Gewartowski it is given the label W.  We use this 

notation since the development to follow is from Millman and Seely.  Our goal is 

to show 

 gentialnormal KEKE tan2 ×=  (I-1) 

The calculation proceeds by determining the average energy of those electrons in a 

metal that are capable of escaping.  This is eq. (5-42) 

 
( )

∫ ∫ ∫

∫ ∫ ∫
∞

=

∞

−∞=

∞

−∞=

∞

=

∞

−∞=

∞

−∞=
++

=
Bvv v v t

vv v v tzyx

xx y z

xBx y z

dN

dNvvv
q

m

E
1

1222

2
1

 (I-2) 

After some calculations the following expression is found 
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Their expression in the denominator is 
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and its evaluation proceeds as (a standard form) 
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as stated.  The second term of eq. (5-42) is 

 
[ ]

[ ]
( )( )
( )( )

2

2

1

2

2

2

2

2

1

1

2
1

4
1

1

2

1

2

1

/

3

3

/

3

3
2

3

2

2

22

22

222

222

T

y

v

y

v

y

y

v

xxBv

v

y

v

yxxBv

v

zyxx

vvvEE

zyxx

vvvEE

y

E

kk
dve

dvev
k

dvedvve

dvevkdvve

dvdvdvvee
h

m

dvdvdvvee
h

m
v

q

m

y

y

y

x

x

y

x

x

zyxTM

zyxTM

=

===

=















∫
∫

∫∫
∫∫

∫ ∫ ∫

∫ ∫ ∫

∞

∞−

−

∞

∞−

−

∞

∞−

−∞ −

∞

∞−

−∞ −

−−−

−−−

λλ
π

λ
π

λ

λ

λλ

λλ

λλλ

λλλ

 (I-8) 

as stated.  The final statements are:  In leaving the metal, the average X-directed 

energy of each electron is reduced by an amount EB, so that the average X-directed 

energy of each electron after it has left the metal is (EB + ET) – EB = ET electron 

volts.  Hence the total average energy of each electron that escapes from the metal 

is ET + 1/2ET + 1/2ET = 2ET electron volts.  In other words the normal is ET 

whereas the Y-directed (which is tangential here) is (1/2)ET.  This is our first 

equation in this Appendix. 



NASA/TM—2001-210890 63 

References 

 

[1]  P. Kirstein, “On the Effects of Thermal Velocities in Two-Dimensional and 

Axially Symmetric Beams,”  IEEE Trans. Elec. Devices, ED-10, March 1963, 

pp.69-80. 

[2]  E. Wheatcroft, “The Theory of the Thermionic Diode, J. Institute Electrical 

Engineers, Vol. 86, pp 473-484, 1940. 

[3]  W. B.  Herrmannsfeldt  Electron Trajectory Program   National Technical 

Information Service, U.S. Department of Commerce, Springfield, VA. September 

1973. 

[4]  W. B. Herrmannsfeldt, Numerical Design of Electron Guns and Space Charge 

Limited Transport Systems, Nuclear Instruments and Methods, Vol. 187, pp245-

253, 1981. 

[5]  R. True,  “Electron Beam Formation, Focusing, and Collection in Microwave 

Tubes,”  Chap. 14 of Handbook of Microwave Technology  

Vol. 1, Academic Press, 1995.   

[6]  J. Gewartowski and H. Watson, Principles of Electron Tubes, D. Van 

Nostrand, 1965. 

[7]  O. Richardson, Emission of Electricity From Hot Bodies, Longmans, Green & 

Co., 1921. p.178. 

[8]  J. Millman and S. Seely, Electronics, McGraw-Hill, 1951. 

[9]  A. H. Beck, Thermionic Valves, Cambridge University Press, 1953. 

[10]  I. Langmuir, “The Effect of Space Charge and Initial Velocities on the 

Potential Distribution and Thermionic Current Between Parallel Plane Electrodes”, 

Physical Review, Vol. 21, 1923. 



NASA/TM—2001-210890 64 

[11]  P. Kirstein,  G. Kino, and W. Waters, Space-Charge Flow, McGraw-Hill, 

1967. 

[12]  N. van der Vaart and A. Leeuwestein, “Full 3D Simulation of Thermionic 

Emission in Electron guns for CRTs”, SID 00 Digest, pp.  956-959.   

[13] M. van den Broek, “Electron-optical simulation of rotationally symmetric 

triode electron guns,” J. Applied Phys. Vol 60, No.11, December 1986, p. 3825 

[14]  L. Page and N. Adams, “Diode Space Charge for Any Initial Velocity and 

Current,”  Phys. Rev. Vol. 76, No 3, Aug. 1, 1949, pp. 381-388. 

[15]  T. Frye, “The Thermionic Current Between Parallel Plane Electrodes; 

Velocities of Emission distributed According to Maxwell’s Law,”  Phys. Rev.   

Vol. 17, No. 4, April 1921, p. 441. 

 



NASA/TM—2001-210890 65 

List of Symbols 

I   d.c. gun (cathode) current 

Kp  perveance of electron gun 

J  current density (amps/m2) 

V  voltage (or potential) along gun or 1-dimensional diode 

E  electric field in 1-dimensional diode 

T1  cathode temperature 

Teff  effective temperature of the M-B ensemble that constitutes the anode 

current 

M-B  Maxwell-Boltzmann energy distribution 

Jo   saturation current density at a given temperature for a specific cathode 

material 

θ  angle from the normal to an emitting patch 

φ  azimuth angle 

v   particle velocity 

<   >  average of quantity over the ensemble 

<v>  average velocity of the particles over the ensemble 

WT  thermal equivalent of energy 

m  electron mass 

k  Boltzmann’s constant 

q  magnitude of electron charge 

np (θ) number of particles emitted vs. θ (number/m3) 

v(θ)  velocity of particles emitted vs. θ (m/sec) 

U.S.A unit solid angle ( differential solid angle = 2π sinθ dθ) 

dP (u, θ)  joint probability of emission velocity u and direction θ 

dNE  number of particles with energy in the range E + dE 
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NTOT  total number of particles in ensemble (or a density:/m3) 

ET   WT energy (in Millman’s [8] notation).  Note [8] uses E for both 

energy and voltage, a very confusing choice, even though they attempt 

to justify it in the beginning chapter

ηρ ηη ddN /  Particle density with respect to the normalized energy η 

η E/ET  normalized energy parameter 

E  a constant = kT (Joules) or kT/q electron volts; for a temperature T

IPATCH  current from a patch of cathode 

APATCH  area of patch 

nj  particle density in energy bin 

∝j  constant, j = 1,…,B 

B  number of energy bins 

KEnormal  total kinetic energy normal to the surface 

KEtangential  total kinetic energy parallel to the surface 

nji  particle density in binj with velocity at angle θi 

jκ   a constant 

f(θ)   θθθ 23
2
1 sincoscos −  

erf  error function 

jη   Ej/ET normalized energy parameter for binj 

η   normalized parameter in the 1-dimensional diode; not to be confused with 

η for normalized energy

ηc η parameter at cathode 

ξ  normalized distance parameter defined by Langmuir [10] 

ξc,a  normalized parameter at cathode or anode 

d  separation of planes in 1-dimensional diode 

j
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Vm  voltage at minimum (virtual cathode plane) 

Va  voltage at anode 

K  constant in analytical expression for E  

)(xρ   charge density (Coulombs/m3) 

εo  permittivity of free space 

A  cross-sectional area 

xa  position of anode 

v(x)  velocity field in the 1-dimensional diode 

TWT  traveling wave tube 

tf  time of flight of a particle in the 3/2-law regime 

ip  patch current 

Np  number of patches 

∆Qp  total charge emitted from a patch during ∆t 

∆Qj  net charge in binj 

np  number of particles/patch emitted during ∆t 

qj  charge of particles in binj 

Mj  mass of particles in binj 

m  mass (generally an electron) 

nj  number of particles (per m3) in binj 

ut  transverse velocity in electron beam 

uz  longitudinal velocity in electron beam 

EGUN  popular electron gun program (used for last 25 years) 

PPM  periodic permanent magnet (stack) 
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